Selectivity and Mass Transfer Limitations in Pressure-Retarded Osmosis at High Concentrations and Increased Operating Pressures.

نویسندگان

  • Anthony P Straub
  • Chinedum O Osuji
  • Tzahi Y Cath
  • Menachem Elimelech
چکیده

Pressure-retarded osmosis (PRO) is a promising source of renewable energy when hypersaline brines and other high concentration solutions are used. However, membrane performance under conditions suitable for these solutions is poorly understood. In this work, we use a new method to characterize membranes under a variety of pressures and concentrations, including hydraulic pressures up to 48.3 bar and concentrations of up to 3 M NaCl. We find membrane selectivity decreases as the draw solution concentration is increased, with the salt permeability coefficient increasing by a factor of 2 when the draw concentration is changed from 0.6 to 3 M NaCl, even when the applied hydraulic pressure is maintained constant. Additionally, we find that significant pumping energy is required to overcome frictional pressure losses in the spacer-filled feed channel and achieve suitable mass transfer on the feed side of the membrane, especially at high operating pressures. For a meter-long module operating at 41 bar, we estimate feedwater will have to be pumped in at a pressure of at least 3 bar. Both the reduced selectivity and increased pumping energy requirements we observe in PRO will significantly diminish the obtainable net energy, highlighting important new challenges for development of systems utilizing hypersaline draw solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the Improvement of Energy Generation by Pressure Retarded Osmosis

Knowing the overall solute flux and the partial fluxes expressed by every single transport layer, the membrane internal interface concentrations can separately be expressed. Both the overall transport coefcient and the driving force strongly depend, among others, on the value of the structural parameter and the water permeability. Study of the interface concentrations as ...

متن کامل

Measurement of Mass Transfer Coefficients of Natural Gas Mixture during Gas Hydrate Formation

In this study, mass transfer coefficients (MTC’s) of natural gas components during hydrate formation are reported. This work is based on the assumption that the transport of gas molecules from gas phase to aqueous phase is dominant among other resistances. Several experiments were conducted on a mixture of natural gas at different pressures and temperatures and the consumed gas was monitored an...

متن کامل

Segregation Behaviour of Particles in Gas Solid Fluidized Beds at Elevated Pressure

A comprehensive mathematical model based on the discrete particle model and computational fluid dynamics was utilized to investigate mixing and segregation of particles in fluidized beds at high pressure. To quantify the extent of mixing in the bed, the Lacey mixing index was used. Simulations were carried out with different mass fractions of small particles at various pressures ranging from 1 ...

متن کامل

Treatment of Phenolic Wastewaters by a Domestic Low-Pressure Reverse Osmosis System

In this paper, the removal of phenol by using aqueous solution in a low pressure reverse osmosis membrane was investigated. The effect of feed pressure, feed concentration, feed flow rate and feed pH on phenol rejection was investigated. The results showed that feed pH is the most affective parameter on the phenol rejection. Rejection of phenol increased with increasing pH from 2 to 10 under th...

متن کامل

Osmotically and thermally driven membrane processes for enhancement of water recovery in desalination processes

Osmotically-driven membrane processes, including forward osmosis (FO) and pressure retarded osmosis (PRO), are emerging technologies that have come under renewed interest and subjected to numerous investigations in recent years. In FO, water is extracted from a feed solution utilizing the high osmotic pressure of a concentrated draw solution (DS) that flows on the opposite side of an FO membran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 49 20  شماره 

صفحات  -

تاریخ انتشار 2015